A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-kappaB, COX-1, and COX-2.
نویسندگان
چکیده
Radiation-induced mucositis is a common and serious side effect of radiotherapy. Molecular mechanisms of mucosal injury, however, are still poorly understood and extremely difficult to study in humans. A novel Dark Agouti rat model using fractionated radiotherapy to induce mucositis has been developed to investigate the occurrence of alimentary mucosal injury. Twenty-four Dark Agouti rats were randomly assigned to receive either fractionated radiotherapy or no radiotherapy. The irradiated rats received a fractionated course of abdominal radiotherapy at 45 Gy/18 fractions/6 weeks treating thrice weekly (i.e., at a radiation dose of 2.5 Gy per fraction). After each week of radiation, a group of irradiated rats was killed. Histomorphology and mucin distribution in the alimentary tract was investigated. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to examine apoptosis in the colon and jejunum, and intestinal morphometry was used to assess villus length, crypt length, and mitotic crypt count. Immunohistochemistry of p53, nuclear factor-kappaB, cyclooxygenase (COX)-1, and COX-2 was also done. The fractionated radiotherapy course induced alimentary mucositis from week 1, with more severe injury seen in the small intestine. The hallmark appearance of apoptosis was present in the crypts of the small and large intestine. In the jejunum and colon, goblet cell disorganization and degeneration was obvious and crypt mitotic counts were severely depleted throughout the treatment. Expression of p53, nuclear factor-kappaB, COX-1, and COX-2 was increased in the irradiated intestinal sections. Fractionated radiation-induced alimentary mucositis has been effectively documented in the Dark Agouti rat for the first time. Further studies investigating the molecular mechanisms underlying radiation-induced mucositis are planned to ultimately achieve anti-mucotoxic-targeted therapies.
منابع مشابه
Celecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملنقش سلکوکسیب همراه با کمورادیاسیون در کاهش موکوزیت و سایر عوارض حاد بیماران با کانسرهای پیشرفته سر و گردن
Background: Chemo-radiotherapy-induced oral mucositis represents a therapeutic challenge frequently encountered in cancer patients. This side effect causes significant morbidity and may delay or interruption of treatment plan, cyclo-oxygenase 2 (COX2) is an inducible enzyme primarily expressed in inflamed and tumoral tissues. COX-2 inhibitors have shown promise to reduce chemoradiation induce t...
متن کاملComparison of COX2 expression in radiation induced basal cell carcinoma and non-radiation induced basal cell carcinoma
Background: Radiation-induced basal cell carcinoma (BCC) can be multiple, large, and recurring, which complicates its treatment in some cases. According to reports on the role of cyclooxygenase 2 (COX2) inhibitors in the treatment or prevention of non-melanoma skin cancers and considering the fact that COX2 expression has not been evaluated in radiation-in...
متن کاملResveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells.
Cyclooxygenase-2 (COX-2) is antiapoptotic and is implicated in tumorigenesis. Recent reports, however, have also ascribed a proapoptotic action to inducible COX-2. We show here for the first time that a stilbene, resveratrol, induces nuclear accumulation of COX-2 protein in human breast cancer MCF-7 and MDA-MB-231 cell cultures. The induction of COX-2 accumulation by resveratrol is mitogen-acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2007